
Example prompt

ZapQuiz: Interactive Quiz Application
Part 1

Project Overview
ZapQuiz is a Kahoot-like interactive quiz application that allows teachers to create quizzes and
participants to join via QR codes, answering questions in real-time with a points-based scoring
system.

Technology Stack
Backend: PHP

Frontend: HTML, CSS, JavaScript (responsive design)

Database: MySQL/MariaDB

CSS Framework: Tailwind CSS

Real-time Updates: SSE (Server-Snet events)

Installation: Must support subdirectory installation (e.g.,
https://www.server.com/zapquiz)

Development Phases
The project will be developed in three distinct phases:

1. Teacher Authentication & Quiz Management (current focus)

2. Quiz Session Initialization & Participant Onboarding

3. Quiz Execution, Scoring & Results Display

Phase 1: Teacher Authentication &
Quiz Management System

Requirements
User Authentication

1. Create a secure login system for teachers with:
Username/email and password authentication

Password encryption using bcrypt

Session management

Basic "remember me" functionality

Password reset capability (optional)

Database Schema (Initial)
1. Teachers Table:

id (PRIMARY KEY)

username

email

password (bcrypt hashed)

created_at

updated_at

2. Quizzes Table:
id (PRIMARY KEY)

teacher_id (FOREIGN KEY)

title

description

unique_identifier (for QR code generation)

status (draft, active, completed)

created_at

updated_at

3. Questions Table:
id (PRIMARY KEY)

quiz_id (FOREIGN KEY)

question_text (HTML-formatted)

image_path (optional)

display_order

time_limit (default: 30 seconds)

created_at

updated_at

4. Answers Table:
id (PRIMARY KEY)

question_id (FOREIGN KEY)

answer_text

is_correct (boolean)

answer_option (A, B, C, or D)

created_at

updated_at

Teacher Dashboard Functionality
1. Authentication Pages:

Login page

For now we don't need an registration page yet.
Create one login with user teacher, password teacher123

No password recovery yet.

2. Quiz Management:
List all quizzes with search/filter options

Create new quiz (with auto-generated unique identifier)

Edit existing quiz details

Delete quiz (with confirmation)

Duplicate quiz with the option to assign it to a different teacher.

3. Question Management:
List all questions for a quiz

Add new questions with:
Question text (HTML editor)

Image upload capability

Four answer options (A, B, C, D)

Correct answer designation

Question reordering capability

Edit existing questions

Delete questions (with confirmation)

Technical Implementation Details
1. Directory Structure:

zapquiz/
├── assets/
│ ├── css/
│ ├── js/
│ ├── images/
│ └── uploads/
├── config/
│ └── database.php
├── includes/
│ ├── auth.php
│ ├── functions.php
│ └── header.php
├── models/
│ ├── Teacher.php
│ ├── Quiz.php

│ └── Question.php
├── views/
│ ├── auth/
│ ├── dashboard/
│ └── quiz/
├── index.php
└── .htaccess (for subdirectory configuration)

2. URL Structure:
/zapquiz/ - Landing page

/zapquiz/login - Teacher login

/zapquiz/dashboard - Teacher dashboard

/zapquiz/quiz/create - Create new quiz

/zapquiz/quiz/{id}/edit - Edit quiz

/zapquiz/quiz/{id}/questions - Manage questions

/zapquiz/quiz/{id}/start - Initialize quiz (Phase 2)

3. Security Considerations:
Input validation and sanitization

CSRF protection for forms

Session security

Proper handling of file uploads

Database query parameterization

UI/UX Requirements
1. Teacher Dashboard:

Clean, professional interface using Tailwind CSS

Responsive design for both desktop and tablet use

Intuitive navigation between quizzes and questions

Visual indication of quiz status (draft, active, completed)

2. Quiz & Question Editor:
User-friendly HTML editor for question text

Simple image upload with preview

Clear visual distinction between correct and incorrect answers

Drag-and-drop functionality for question reordering (optional)

Deliverables for Phase 1
1. Functional teacher authentication system

2. Complete quiz CRUD operations

3. Question and answer management system

4. Responsive UI built with Tailwind CSS

5. Database with appropriate schema and relationships

6. Installation instructions for subdirectory setup

Next Steps After Phase 1
Upon completion of Phase 1, development will proceed to Phase 2, focusing on quiz initialization,
QR code generation, and participant onboarding.

--

ZapQuiz - Quiz Initialization
& Participant Onboarding
Prompt
Flow Overview
For the second phase of the ZapQuiz application, we need to implement the quiz initialization flow
and participant onboarding process. This system bridges the teacher dashboard to the actual quiz
experience.

Requirements

Teacher Dashboard to Quiz Launch
1. Implement a "Start Quiz" button on the teacher dashboard for each available quiz

2. When clicked, this should navigate to a splash page designed for classroom display

Quiz Splash Page (Teacher View)
Design a splash screen that includes:

1. A prominent, large QR code that students can scan with their phones
The QR code should contain a unique URL for joining the specific quiz session

The URL should be in the format: https://[domain]/zapquiz/join/[unique-code]

2. A text version of the join link displayed beneath the QR code
Make this text clearly visible for situations where QR scanning isn't possible

Consider making this text easily selectable for sharing via other means

3. A real-time participant list
As students join, their names should appear in this list

Use Server-Sent Events or WebSockets to update the list without page refresh

Include a counter showing the total number of participants

4. A prominent "Begin Quiz" button
This should be enabled only when at least one participant has joined

Include a confirmation dialog to prevent accidental starts

Participant Join Flow (Student View)
When a student scans the QR code or enters the join link:

1. Create a mobile-friendly landing page with:
Quiz title

Teacher's name

A form to enter the student's name

Clear instructions

2. After name submission:
Validate the name (no empty submissions, reasonable length)

Store the participant in the database with a unique session ID

Redirect to a waiting screen

3. Design a waiting screen that:
Confirms successful registration

Displays a friendly "Waiting for quiz to begin..." message

Includes a visual indicator that the connection is active

Uses Server-Sent Events or WebSockets to listen for quiz start signal

Database Requirements
1. Add a sessions table to track active quiz sessions:

session_id (PRIMARY KEY)

quiz_id (FOREIGN KEY)

status (waiting, active, completed)

started_at

ended_at

2. Add a participants table:
id (PRIMARY KEY)

session_id (FOREIGN KEY)

name

joined_at

current_score (default 0)

last_active

Real-Time Communication Requirements
1. Implement Server-Sent Events or WebSockets to:

Update the teacher's view with participant names as they join

Notify participants when the quiz begins

Maintain connection status

2. Create appropriate event handlers for:
Participant join events

Quiz state changes

Connection status updates

Security Considerations
1. Implement basic validation to prevent:

Empty or excessively long participant names

SQL injection or XSS attacks

Multiple participants with identical names

2. Handle session management securely:
Store participant session information securely

Prevent unauthorized quiz access

Technical Implementation Notes
1. For QR code generation:

Use a reliable PHP QR code library

Generate codes at an appropriate size for classroom display

Ensure proper contrast for easy scanning

2. For the real-time participant list:
Implement clean animations for new participants

Limit the list height with scrolling for large classes

Consider showing a count of total participants

3. For the subdirectory installation:
Ensure all URLs correctly account for the /zapquiz prefix

Update URL generation in QR codes accordingly

Deliverables
The completed implementation should include:

1. Teacher dashboard with Start Quiz functionality

2. Quiz splash page with QR code, join link, and participant list

3. Participant join flow with name entry and waiting screen

4. Real-time communication system for participant updates

5. Database schema updates for sessions and participants

6. Complete integration with existing teacher authentication system

Next Steps
After this phase is complete, the third phase will implement the actual quiz gameplay, including
question display, answer submission, scoring, and results visualization.

Revision #10
Created 5 April 2025 10:34:06 by Max
Updated 5 April 2025 20:15:42 by Max

