
(moet nog uitgewerkt worden; samenwerkingsopdracht?)

Deze Challenge heeft 5 opdrachten die allemaal moeten worden gemaakt.

Iedereen maakt ten minste één opdracht en je helpt elkaar.

Iedereen moet de code snappen en kunnen uitleggen.

Jullie presenteren samen de complete code en laten zien hoe het werkt.

De opdrachten zijn deze keer in het Engels, maar je kan deze natuurlijk laten vertalen door AI.

Now let's make the movement of the ball more interesting. You should make the ball go faster
when it hits the paddle, and randomly change the direction of the ball within a small range.

1. Ensure that the speed of the ball increases by 5% each time it hits a paddle.

2. Make the ball have a small random variation in angle when it hits a paddle to make the
game more unpredictable.

3. Test your code to check if the ball responds correctly.

Python 3 - Game of Pong
Challenge

Samenwerken

1 - Advanced Ball Movement

Instructions

Deliverables

1. The code (.py)

2. A short explanation, in a.txt file, about how you implemented the implementation of the
variations in speed and angle.
In this .txt file, you specify the members of the team and the author(s) of the modified
code.

In this assignment, we'll introduce a score multiplier feature. If a player hits the ball multiple times
without missing, their score will increase faster. This concept is similar to a combo multiplier in
many games, encouraging players to keep the ball in play to maximize their score.

1.

Create a multiplier variable starting at 1.

Every time the ball hits the paddle without the player missing, increase the
multiplier by 0.5 (up to a maximum of 3x).

When the player misses, reset the multiplier to 1.

Multiplier Logic:

2.

Modify the update_score() function to display the current multiplier alongside the
score.

Update Score Function:

2 - Score Multiplier and Bonus
Points
Introduction

Task

Example Code Snippet:

1. A .txt document

2. A short description of a few lines in a.txt file, about how your code works.
In this .txt file you specify the members of the Team and the author(s) of the modified
code.

Managing game state is crucial in game development. In this assignment, you'll implement a pause
functionality, allowing players to pause and resume the game.

Initialize the multiplier

multiplier = 1.0

Update the score function to include the multiplier

def update_score():

 pen.clear()

 pen.write(f"Score: {score} Levens: {lives} Multiplier: {multiplier}x", align="center",

font=("Courier", 24, "normal"))

Update multiplier in the game loop

if hit_paddle:

 multiplier = min(multiplier + 0.5, 3)

 score += int(1 * multiplier)

else:

 multiplier = 1

Deliverable

3 - Handling Game State and
Pausing
Introduction

Task

1.

Introduce a game_state variable that can be either "playing" or "paused".

Game State Variable:

2.

Create functions to pause and resume the game. When paused, the game loop
should not update the ball or paddle positions.

Bind a keyboard key (e.g., "p") to toggle between "playing" and "paused".

Pause and Resume Functions:

1. A .py file with the pause functionality implemented. Include a comment explaining how
the pause feature is beneficial in games.

Example Code Snippet:

game_state = "playing"

def toggle_pause():

 global game_state

 if game_state == "playing":

 game_state = "paused"

 else:

 game_state = "playing"

wn.listen()

wn.onkeypress(toggle_pause, "p")

while True:

 if game_state == "playing":

 # Game logic updates

 wn.update()

 else:

 # Game is paused; do not update game logic

 pass

Deliverable

2. In this .py file you specify the members of the team and the author(s) in comments.
Place this at the top of your code.

Adding power-ups can make games more engaging. In this assignment, you'll introduce a new
feature: power-ups that appear randomly and affect the game when collected.

1.

Create a new turtle object representing a power-up. Randomly place it on the
screen every 20 seconds.

If the ball hits the power-up, apply a random effect such as increasing the paddle
size, slowing down the ball, or adding an extra life.

Power-Up Implementation:

2.

Ensure that power-up effects last only for a certain period (e.g., 10 seconds),
after which the game returns to normal.

Effect Duration:

4 - Power-Ups and Advanced
Features
Introduction

Task

Example Code Snippet

import random

def spawn_power_up():

 power_up = turtle.Turtle()

 power_up.shape("circle")

 power_up.color("blue")

1. A .py file with the power-up feature implemented. Include comments explaining each
power-up and its impact on the game.

2. In this .py file you specify the members of the team and the author(s) in comments.
Place this at the top of your code.

Improving collision detection can make a game feel more realistic. In this assignment, we'll refine
the collision detection to account for the ball's velocity and angle, providing a more physics-based
gameplay experience.

 power_up.penup()

 x = random.randint(-350, 350)

 y = random.randint(-250, 250)

 power_up.goto(x, y)

 return power_up

def apply_power_up(effect):

 global paddle, ball

 if effect == "increase_paddle":

 paddle.shapesize(stretch_wid=8)

 # Reset after 10 seconds

 wn.ontimer(lambda: paddle.shapesize(stretch_wid=6), 10000)

 elif effect == "slow_ball":

 ball.dx *= 0.5

 ball.dy *= 0.5

 wn.ontimer(lambda: reset_ball_speed(), 10000)

Example effect application in the game loop

if ball.distance(power_up) < 20:

 apply_power_up(random.choice(["increase_paddle", "slow_ball"]))

Deliverable

5 - Collision Detection and Physics
Introduction

1.

Adjust the ball’s direction based on where it hits the paddle (top, middle, or
bottom). If it hits the top, it should bounce off at a sharper angle; if it hits the
middle, it should bounce back more vertically.

Advanced Collision Detection:

2.

Modify the game so that when the ball hits the paddle near its edges, it alters its
dx and dy to create an angled bounce.

Implement Angled Bounces:

1. A .py file with advanced collision detection and physics implemented. Include a brief
explanation of how physics enhances gameplay realism.

2. In this .py file you specify the members of the team and the author(s) in comments.
Place this at the top of your code.

--

Task

Example Code Snippet

def check_collision():

 global ball, paddle

 if ball.distance(paddle) < 50 and ball.xcor() < -340:

 # Calculate where the ball hit the paddle

 hit_pos = ball.ycor() - paddle.ycor()

 ball.dy = hit_pos * 0.05

 ball.dx *= -1

Deliverable

Revision #15
Created 25 August 2024 12:49:40 by Max
Updated 25 August 2024 18:48:45 by Max

