Grid View - Max MVC

Below is sample documentation that explains how to configure each column in your grid. You can
include this in your project’s documentation (for example, as a README or developer guide).

Grid Column Data Structure

Each column in the grid is defined as an associative array. The following keys are available:

Required Keys

° name
Type: string
Description:
The header text shown at the top of the column.
Example:

'name' => 'Order ID'

e data
Type: string
Description:
Specifies how to obtain the value for each cell in this column.

o If the value is a plain key (e.g., "order_id"), the cell displays the corresponding
value from each record in your data array.

o If the value contains tokens enclosed in curly braces (e.g. "{price} * {quantity}"), it
is treated as a formula. Each token is replaced by the value from the
corresponding key in the data record, and the resulting expression is evaluated.
Examples:

// Plain data field (must exist in each $data record)

‘data’ => 'order_id'

/I Calculated field using tokens

'data' => '{price} * {quantity}'

Optional Keys

width

Type: string

Description:

The width of the column as a CSS value (e.g., "60px" or "10%").
Example:

'width' => '80px'

align

Type: string

Description:

Sets the text alignment for the column. Valid values are:

o "left" (default)
o "right"

o "center" Example:

‘align' => 'right'

formatter

Type: string

Description:

A PHP expression used to format the cell’s value. The expression is evaluated using
eval() . You can use the variable sitem (or s$value for computed columns) to reference
the current cell data.

Example:

'formatter' => 'number_format($item["price"], 2, ".", ",")'

When using formulas for the data key, the computed value can be formatted by
referencing $value :

'‘formatter' => 'number_format($value, 2, ".", ",")'

aggregate

Type: string

Description:
Specifies how to compute an aggregate value for this column (displayed in the footer).

Accepted values:

o "sum" - calculates the total.
o "average" - calculates the average.

o A formula string (e.g., "({YTD_PL} / {VALUE_EUR}) * 100") that uses tokens to
reference computed aggregate values from other columns. Example:

// Standard aggregate (sum)

'‘aggregate' => 'sum’,

/! Aggregate based on a formula

'‘aggregate' => '({YTD_PL} / {VALUE_EUR}) * 100"

aggregateToken

Type: string

Description:

Used when the computed aggregate value of this column needs to be referenced in
another aggregate formula. When provided, the calculated value is stored in a global
object (or passed to JavaScript) under this token name.

Example:

'‘aggregateToken' => '"YTD PL'

sortable

Type: boolean (or integer with values 0/1)

Description:

Indicates whether the column is sortable by clicking on the header.
Example:

'sortable' => true

filter

Type: string
Description:
Specifies the type of filtering available for the column. Valid values are:

o "none" - no filter input.

o "select" - a dropdown list of unique values.

o "text" - a text input for filtering

'filter' => 'text'

e hide
Type: boolean
Description:

. Example:

Determines whether the column is visible in the rendered grid. If set to true , the column
is hidden from the user view via CSS (display: none), but it remains in the DOM so that its
data is still available for calculations (such as aggregates or formulas).

Example:

'hide' => true

Example of a Complete Column

Configuration

Below is a sample array of columns that demonstrates how to configure different aspects:

$columns = [

[

'name’ => 'Order ID’,
'data’ => 'order_id",
'width' => '80px’,
‘align’ =>'"left!,

'sortable' => true,

'filter' => 'text,

I

[
‘'name’ => 'Customer’,
'data’ => 'customer_name’,
'width' => '150px’,
‘align’ => "left',

'sortable' => true,

'filter' => 'select’,

‘'name’ => 'Price’,

'data’ => 'price’,
'width' => '80px',
‘align’ => 'right’,
'‘formatter' => 'number_format($item["price"], 2, ".", ",")",

'‘aggregate' => 'sum’,

'sortable' => true,

'filter' => 'none',

I

[
'name’ => 'Quantity’,
'data’ => 'quantity’,
'width' => '60px’,
‘align’ => 'right',

'‘aggregate' => 'sum’,

'sortable' => true,

'filter' => 'none’,
I
[
'name’ => 'Total',
'data’ => '{price} * {quantity}', // Calculated column using tokens
'width' => '100px’,
‘align’ => 'right’,
'‘formatter' => 'number_format($value, 2, ".", ",")", // $value refers to the computed total

'‘aggregate' => 'sum’,

'sortable' => false,

'filter' => 'none',
I
[
'name’ => 'Secret Code',
'data’ => 'secret_code',
'hide’ => true, // Hidden from the view but used for calculations or references

'sortable' => false,

'filter' => 'none’,

Notes

¢ Formulas in data or aggregate :
When using a formula, ensure that tokens (e.g., {price} or {quantity}) exactly match the
keys in your data records. If a token is missing, you may get unexpected results or
errors.

e DOM and Calculations:
Even if a column is hidden (hide is set to true), it is still rendered in the DOM (using a
CSS class such as hidden-col with display: none). This is important so that JavaScript
functions that perform calculations (such as aggregate totals) can still access the values.

o Formatter Security:
Since formatter is evaluated using eval() , make sure that any code provided is trusted
and controlled. Do not use untrusted input in these expressions.

This documentation provides an overview of how to set up and customize the grid’s column
definitions. Adjust the examples to match your application’s needs, and feel free to extend the
configuration with additional keys or logic as required.

Revision #2
Created 16 February 2025 18:16:10 by Max
Updated 16 February 2025 18:21:40 by Max

