
SSH Checklist

SSH Key Setup Checklist

1. Generate SSH Key Pair
Ensure that you have generated an SSH key pair on the client machine ( system a
).

Run the following command and check for the existence of ~/.ssh/id_rsa
(private key) and ~/.ssh/id_rsa.pub  (public key):

ls -l ~/.ssh/id_rsa ~/.ssh/id_rsa.pub

If the keys do not exist, generate them using:

ssh-keygen -t rsa -b 4096

Ensure the keys have appropriate permissions (600 for private and 644 for public
keys):

chmod 600 ~/.ssh/id_rsa
chmod 644 ~/.ssh/id_rsa.pub

2. Copy Public Key to Remote Server
Ensure that the public key has been copied to system b  and appended to the
~/.ssh/authorized_keys  file.

Use the ssh-copy-id  command to copy the key:

ssh-copy-id username@system_b

Alternatively, you can manually copy the contents of ~/.ssh/id_rsa.pub  to
~/.ssh/authorized_keys  on system b .

Verify that the authorized_keys  file has the correct permissions:

chmod 600 ~/.ssh/authorized_keys

Make sure the .ssh  directory has the correct permissions:



chmod 700 ~/.ssh

3. Check SSH Daemon Configuration on Remote Server
Ensure the SSH daemon is configured to allow key-based authentication. Check
/etc/ssh/sshd_config  on system b  for the following settings:

PubkeyAuthentication yes

AuthorizedKeysFile .ssh/authorized_keys

PasswordAuthentication no  (optional, for enforcing key-based auth only)

Restart the SSH daemon to apply changes:

sudo systemctl restart sshd

4. Verify Ownership and Permissions
Check ownership and permissions of the user's home directory on system b :

Ensure that the home directory and .ssh  directory are owned by the user
and have appropriate permissions:

chown -R username:username /home/username
chmod 700 /home/username/.ssh

5. Ensure Correct SSH Command Usage
Use the correct username and hostname when attempting to SSH into system b :

ssh username@system_b

If using a non-standard SSH port, specify it using the -p  option:

ssh -p <port_number> username@system_b

6. Check SSH Agent (Optional)
Ensure that the SSH agent is running and the key is added to it, especially if
using ssh-agent  for key management:

eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_rsa



Verify the keys added to the agent:

ssh-add -l

7. Review SSH Debugging Output
Use the -v  option with the SSH command to enable verbose mode, which can
provide detailed debugging information:
bash
ssh -v username@system_b

Look for lines indicating whether the key is being offered and any errors that may
indicate why the key is being rejected.

8. Network Issues
Ensure there are no network issues preventing the connection. Check that
system b  is reachable via the network.

Verify that the firewall on system b  is allowing incoming SSH connections on the
specified port.

9. SELinux and AppArmor (Linux Specific)
If system b  uses SELinux, ensure it is not blocking SSH connections:

sudo setenforce 0  # Temporarily disable for testing

If using AppArmor, check that it allows SSHD to read the authorized_keys file.

10. Check for Multiple Keys (Optional)
If multiple keys are present, specify the exact key to use:

ssh -i ~/.ssh/id_rsa username@system_b

By following this checklist, you should be able to identify and resolve most issues preventing SSH
key-based authentication. If problems persist, examining the verbose output from the SSH
command can provide further clues.

Revision #3
Created 4 August 2024 17:13:50 by Max
Updated 4 August 2024 17:18:41 by Max


