
Integrating collapsible groups with triangles in a Yii2 GridView requires a creative approach
because GridView is primarily designed for flat data presentation. However, you can achieve this
by manipulating the GridView and incorporating custom HTML and JavaScript for the collapsible
functionality. Here’s a conceptual outline of how you might approach this:

Organize your data in a way that it can be grouped logically. Your data query should include the
field(s) you intend to group by.

You'll use the beforeRow and afterRow properties of the GridView to inject custom HTML for group
headers and footers. The group header will include the triangle and group title, and the group
footer will serve as a marker for the end of a group.

Grouping rows in Gridview

Step 1: Prepare Your Data

Step 2: Customize Gridview Rows

PHP

echo GridView::widget([

 'dataProvider' => $dataProvider,

 'filterModel' => $searchModel,

 'beforeRow' => function ($model, $key, $index, $grid) {

 static $lastGroup = null;

 $currentGroup = $model->groupAttribute; // Replace 'groupAttribute' with your actual

attribute used for grouping

 if ($lastGroup !== $currentGroup) {

 $lastGroup = $currentGroup;

 return "<tr class='group-header'><td colspan='5'>

 <div class='group-title'>▾

{$currentGroup}

 </div>

 </td></tr>";

 }

Add CSS for the group headers and the triangle icon. You can style the triangle to indicate
collapsibility and use CSS transformations to change its orientation based on the group's collapsed
state.

Use JavaScript to handle the click event on the group header, toggling the visibility of the group
content and the orientation of the triangle icon.

 return null;

 },

 // Define your columns, and other GridView configurations here...

]);

Step 3: CSS for Styling

CSS

.group-header .triangle {

 cursor: pointer;

 display: inline-block;

 transition: transform 0.3s ease-in-out;

}

.group-header.collapsed .triangle {

 transform: rotate(-90deg); /* Pointing right when collapsed */

}

.group-content {

 display: none; /* Initially hide the content */

}

Step 4: JavaScript for Collapse/Expand
Functionality

JavaScript

$(document).on('click', '.group-header', function() {

 var header = $(this);

Group Content: The actual rows of the GridView will serve as the group content. They
will be shown/hidden based on the header click.

Group Headers and Footers: These are custom rows injected into the GridView using
beforeRow . There's no built-in afterRow , but you can simulate this by checking if the
next row belongs to a different group or if it's the last row of the current group.

Performance: With many rows and groups, the performance might be impacted,
especially client-side due to the large DOM manipulation.

Complexity: This solution adds a layer of complexity to your GridView rendering logic,
so it's crucial to maintain clean and well-documented code.

Styling and Behavior: You might need to refine the CSS and JavaScript to fit the visual
and functional requirements of your application.

This approach is a bit of a hack around the default GridView behavior, so it requires careful
implementation and testing to ensure it works smoothly across different datasets and user
interactions.

 header.toggleClass('collapsed');

 header.nextUntil('.group-header').toggle(); // This will show/hide the rows until the next

group header

});

Step 5: Integration with Gridview

Caveats and Considerations

Revision #4
Created 2 February 2024 19:14:33 by Max
Updated 4 February 2024 19:09:38 by Max

