
Customize Authentication On Yii Framework Using MySQL
Database
Just managed to find some time to play around with Yii. Yii is powerful but there is still a long way
to go if we are talking about documentation for Yii framework. In Yii framework, we can see that it
is very different from CodeIgniter where documentation is really structured and well understood.
Nonetheless, i still feel that Yii framework is worth to explore. I managed to get my own customized
authentication on Yii by adding some secure feature such as hashing, salt, key and etc. So here i
am writing this tutorial to share with you more about Yii framework using MySQL database.

Since this is more like a follow up tutorial, there are a few requirements before you start reading
this tutorial.

1. Installed Yii with a MySQL database.

2. Setup Gii and get the user CRUD completed.

Now here comes the tricky part. We need a database that stored our hashed password which is 128
bits since i am using sha512. Our data schema should looks like this,

Login - Copied

Requirement

Customize Authentication -
Database

CREATE TABLE tbl_user (

 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

 username VARCHAR(128) NOT NULL,

 password VARCHAR(128) NOT NULL,

http://hungred.com/how-to/image-tutorial-setup-yii-framework-wamp-mysql-database/
http://www.yiiframework.com/doc/guide/quickstart.first-app

Well, it looks the same as the demo one so just ignore me lol. Create this table and we are ready to
do some MVC. If you are following the tutorial you would most likely get a CRUD user setup. But we
only have 'admin' and 'demo' login account. We would definitely want something better.

In order to validate a user, we need to create a few methods in the model folder in order to
authenticate and store user password. We will need to create these functions on our User.php file
on our model folder.

the two methods above is used to validate the user password during login and the other method
returns a hashed password given the original plain password value. Once these two methods are
pasted into the user.php file. We are done with our modal!

 email VARCHAR(128) NOT NULL

);

Customize Authentication - Model

/**

 * @return boolean validate user

 */

public function validatePassword($password, $username){

 return $this->hashPassword($password, $username) === $this->password;

}

/**

 * @return hashed value

 */

DEFINE('SALT_LENGTH', 10);

public function hashPassword($phrase, $salt = null){

 $key = 'Gf;B&yXL|beJUf-K*PPiU{wf|@9K9j5?d+YW}?VAZOS%e2c -:11ii<}ZM?PO!96';

 if($salt == '')

 $salt = substr(hash('sha512', $key), 0, SALT_LENGTH);

 else

 $salt = substr($salt, 0, SALT_LENGTH);

 return hash('sha512', $salt . $key . $phrase);

}

In controller, we need to modify the create and update handler but i will just demonstrate the
create user handler. Go to your controller folder and look for UserController.php. Change the
method actionCreate to the following

This way, we can create user with hashed password instead of plain password stored in our
database.

Customize Authentication -
Controller

/**

 * Creates a new model.

 * If creation is successful, the browser will be redirected to the 'view' page.

 */

public function actionCreate()

{

 $model=new User;

 // Uncomment the following line if AJAX validation is needed

 // $this->performAjaxValidation($model);

 if(isset($_POST['User']))

 {

 $model->attributes=$_POST['User'];

 $model->password = $model->hashPassword($_POST['User']['password'],

$_POST['User']['email']);

 if($model->save())

 $this->redirect(array('view','id'=>$model->ID));

 else

 $model->password = $_POST['User']['password'];

 }

 $this->render('create',array(

 'model'=>$model,

));

}

Next we need to authenticate our users. The original one just defined 'demo' and 'admin' as the
only users that we are able to login. But now we have a database and a list of user and password.
We should really secure our login. Here we modify our original authentication method to the
following one.

this allowed us to go through the users in our database table instead of the hardcoded one by
using the method we wrote previously on the modal folder.

Now, our user will be authenticate using our customized authentication process rather than using
the default one!

No related posts.

Customize Authentication -
Component

public function authenticate()

{

 $username = $this->username;

 $user = User::model()->find('username=?', array($username));

 if($user === NULL)

 $this->errorCode=self::ERROR_USERNAME_INVALID;

 else if(!$user->validatePassword($this->password, $this->username))

 $this->errorCode=self::ERROR_PASSWORD_INVALID;

 else{

 $this->username = $user->username;

 $this->errorCode=self::ERROR_NONE;

 }

 return !$this->errorCode;

}

Revision #3
Created 5 March 2021 19:58:44 by Max
Updated 24 November 2021 08:54:43 by Max

